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Abstract Current available literature indicates a risk for metal-induced autoim-
munity in man. Metal pathology may be due to toxic or allergic mecha-
nisms where both may play a role. The main factors decisive for disease 
induced by metals are exposure and genetics which determine the indi-
vidual detoxifying capacity and sensitivity to metals. This paper reviews 
the possible mechanisms which may play a role in metal-induced autoim-
munity with the emphasis on multiple sclerosis (MS), rheumatoid arthri-
tis (RA) and amyotrophic lateral sclerosis (ALS). We also discuss the role 
of infl ammation-induced changes in the hypothalamus-pituitary-adrenal 
(HPA) axis as a possible explanation of fatigue, depression and other psy-
chosomatic symptoms observed in these diseases. The increased knowl-
edge about individual sensitivity based on genotype and phenotype vari-
ability together with the use of biomarkers for the diagnosis of this 
individual susceptibility seems to be the key in elucidation of the operat-
ing mechanisms. Since metal-induced sensitization may be induced by 
chronic low-dose exposure, the conventional toxicological approach com-
paring concentrations of metals in brain autopsies, organ biopsies and 
body fl uids in patients and controls may not provide answers regarding 
the metal-pathology connection. To address this issue, longitudinal stud-
ies of metal-sensitive patients are preferable to the traditional case-con-
trol studies.
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Abbreviations

ALS        amyotrophic lateral sclerosis
ANA       anti-nuclear antibodies
ANoA      anti-nucleolar antibodies
APC        antigen-presenting cells
CFS         chronic fatigue syndrome
CNS        central nervous system
CSF         cerebrospinal fl uid
DMSA     dimercaptosuccinic acid
D-pen     D-penicillamine
FALS       familial amytrophic lateral sclerosis
GFAP      glial fi brillary acidic protein
GLU        glutamate
HLA        human leukocyte antigen
HPA        hypothalamus-pituitary-adrenal
Ig          immunoglobulin
IL-1       interleukin 1
LFA-1     lymphocyte function-associated antigen-1
m-Ab      monoclonal antibodies
MBP       myelin basic protein
MCS        multiple chemical sensitivity
MHC       major histocompatibility complex
MELISA®  Memory Lymphocyte Immuno Stimulation Assay
MND       motor neuron disease
MS         multiple sclerosis
MT         metallothioneins
NK         natural killer
OH-        hydroxyl radical
PLC        phospholipase C
PLP        proteolipid protein
PNS        peripheral nervous system
RA         rheumatoid arthritis
ROS        reactive oxygen species
SH         sulfhydryl
SLE        systemic lupus erythematosus
SOD        superoxide dismutase
TNF        tumor necrosis factor

Introduction

Our demands for a high living standard create an 
increasingly artifi cial environment. We are subjected 
to accumulating pollution from industry, exhausts, 
magnetic fi elds (from computers, cellular phones, 
lamps), implants (such as bone screws, silicone 
breasts, dental fi llings), food (preservatives, food col-
orings) and psychological stress. In parallel, many 
modern-time diseases are steadily increasing in fre-
quency. These diseases include allergies, multiple 
chemical sensitivity (MCS) [1], chronic fatigue syn-
drome (CFS), sensitivity to electro-magnetic fi elds, 
depressions and the vast group of autoimmune dis-
eases. 

Possible factors in the pathogenesis of auto-
immunity

Environmental factors that are implicated in the 
development of autoimmune diseases include bacte-
ria, viruses, and xenobiotics such as chemicals, drugs 
and metals. Many cases of autoimmunity debut 
after an infection. However, it seems that despite 
persistent research efforts, no conclusive evidence 
has linked certain microorganisms or viruses to the 
pathogenesis of autoimmune disease. That subject is, 
however, beyond the scope of this article which will 
focus on the current knowledge concerning the pos-
sible etiological role of metals in the pathogenesis of 
autoimmune disease. 

Several factors have been studied concerning the 
induction of autoimmunity. Certain types of major 
histocompatibility complex (MHC) are associated 
with an increased risk for autoimmunity in animal 
models. In man, the human lymphocyte antigen 
(HLA) linkage to susceptibility has only a relative 
predictive value, thus indicating that other factors 
also contribute to the development of autoimmunity. 
Obvious is the overrepresentation of female patients 
in certain autoimmune diseases (for example, in 
SLE, the female predominance ratio is 10–20:1, for 
MS 10:1 [2]), indicating that sex hormones may play 
a role in the pathogenesis. It is also common that 
autoimmune disease debuts in women of child-bear-
ing age, when the levels of estrogen and progester-
one peak. The observation that monozygous twins 
do not always develop the same disease (e.g. the con-
cordance rate of autoimmune diabetes is around 30% 
[2]) further indicates that there are other factors 
involved in the pathogenesis of autoimmune disease. 
In one study [3], the results of HLA typing of metal-
sensitive patients showed higher frequencies of cer-
tain HLA antigens, among others HLA DR 4 and 
HLA B27. In another study [4], HLA DR 4 antigen 
was signifi cantly increased in palladium-sensitive 
patients.

The effects of metals in biological systems: 
toxicity and allergy

Available literature clearly demonstrates metal-
induced autoimmunity in animal systems [5]. 
Reports that link metal exposure to the develop-
ment of autoimmunity in man include epidemiologi-
cal studies, occupational exposure to metals, and a 
high prevalence of side-effects following treatment 
with metal chelators and colloidal gold.

Metals in nature occur bound to sulfur groups in 
metal ores in the ground. When extracted for indus-
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trial use, they are purifi ed and thereby lose their 
chemical stability. Some transition metals such as 
iron, cobalt, zinc, selenium, molybdenum, magne-
sium, chromium, manganese and copper are essen-
tial for life. Others, such as titanium, chromium, 
iron, nickel, copper, palladium, silver, platinum, gold 
and mercury are widely used in industry and in vari-
ous implants. Except for chromium, iron and copper, 
those metals have no established function in man.

In living organisms, metals exert their effects in 
different ways. They avidly bind to sulfhydryl (SH) 
groups but also to -OH, NH2 and Cl groups in pro-
teins, enzymes, co-enzymes and cell membranes. 
The metal binding interferes with cellular proc-
esses, changing membrane charge, permeability, and 
the antigenicity of autologous structures. Metals in 
ionic form reach cell membranes attached to cir-
culating blood proteins, particularly the water-sol-
uble component of lipoproteins. Here, the affi nity 
is strongest for SH-containing molecules such as 
methionine, cysteine and glutathione. It is this fea-
ture that allows ionic metals to exchange freely 
between lipoprotein and the macromolecules of 
ligands of cell membranes, including red blood cells. 
The hemoglobin of red blood cells is particularly 
rich in SH groups which further explains how ionic 
metals reach the various cell membranes via blood. 
Since metals in ionic form are lipophilic, they readily 
pass the blood brain barrier. For example, mercury 
vapor readily oxidizes in brain and nervous tissue 
to its ionic form, where ionic mercury binds with 
SH groups of cell membranes, protein and brain 
enzymes [6].

The toxic effects of metals are mediated through 
free radical formation, cell membrane disturbance 
or enzyme inhibition, among others. By binding to 
cell membranes, metals alter the membrane charge, 
which may result in changed membrane permeabil-
ity, calcifi cation and cell death. Metals also bind to 
mitochondria, thereby impairing cellular respiration 
[7]. Depending on genetically determined detoxifi -
cation systems, an individual may tolerate more or 
less exposure to toxic metals before showing adverse 
effects. 

The immunological effects of metals are either 
non-specifi c such as immunomodulation or antigen-
specifi c such as allergy and autoimmunity. Metals 
may act as immunosuppressants (cytostatically) or 
as immunoadjuvants (non-specifi c activation of the 
immune system). One example of immunomodula-
tion is the ability of metals to modify cytokine pro-
duction in vitro and in vivo. The resulting imbalance 
between Th1 and Th2 activation can result in immu-
nodysregulations leading to impaired cell-mediated 

immunity and/or aberrant humoral immunity that 
may culminate in autoimmune disease. Heo et al. 
found that lead and mercury enhanced IL-4 produc-
tion by a Th2 clone (and inhibited Th1 proliferation) 
in vitro and in vivo. This suggests that these metals 
may induce an autoimmune response by dysregulat-
ing the balance between Th1 and Th2, which could 
enhance the production of antibodies to self-anti-
gens [8]. Another example is the enhancement of 
the intensity and duration of antigen-specifi c IgE 
responses by gold salts [9], mercury, platinum and 
aluminum [10, 11].

Metals may also induce allergy in genetically sus-
ceptible individuals. Most of these are of type 4 
(delayed-type hypersensitivity, such as contact der-
matitis) but immediate-type reactions are some-
times also observed [12-14]. It can be anticipated 
that cellular reactions triggered by metals may oper-
ate elsewhere in the body where metals are depos-
ited. Traditionally, metal allergy has been diag-
nosed by patch test. This method has, however, 
several drawbacks; objective interpretation is diffi -
cult, application of allergen onto skin may aggravate 
an existing allergy and, fi nally, it harbors the risk of 
de novo sensitization. Recently, Penz et al. compared 
the diagnostic effi ciency of the expression of CD69 
activation markers, cytokine release and lymphocyte 
stimulation test (LST) in nickel allergy. Of the tests, 
LST had the highest diagnostic effi ciency (87%) for 
the diagnosis of nickel sensitization [15]. LST has 
been used in immunology diagnostics for delayed-
type hypersensitivity for decades [2]. Memory Lym-
phocyte Immuno Stimulation Assay (MELISA®) has 
been found particularly useful for diagnosis of metal 
allergy in vitro [16–19]. 

Several mechanisms are proposed for how metals 
act within the immune system and induce autoim-
munity. Metals bind to SH and other groups, thereby 
modifying self-proteins which via T-cells may acti-
vate B-cells and render the altered self-protein target 
for autoantibodies. Due to cross-reactions, the T-cells 
may also react to the native protein. Metal-binding 
directly to MHC II without prior processing by anti-
gen-presenting cells or even directly to the T-cell 
receptor is also proposed. Another possibility is 
described in a study of scleroderma where autoanti-
gens possess metal-binding sites, which after binding 
will generate free radicals. Free radicals will fragment 
the auto-antigens, thereby exposing cryptic epitopes 
which may then trigger autoimmunity [20]. In this 
case, the metal is not a part of the autoimmune epit-
ope. 
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In his excellent review on metal-induced autoim-
munity, Bigazzi [21] provides further evidence that 
metals may cause aberrant MHC II expression on 
target cells, inhibit T-suppressor cells, cause alter-
ations in the idiotype-anti idiotype network and 
induce heat-shock proteins. These and other factors 
may play a role in metal-induced autoimmunity.

Autoantibodies

Autoantibodies occur in systemic and organ-
specifi c autoimmune disease. Since autoantibodies 
sometimes occur before the onset of disease, they 
can be used as predictive markers. Some are disease-
specifi c markers and used to establish a diagnosis, 
to record progression and predict outcome of the dis-
ease. Both drugs and heavy metals are known to 
induce autoantibodies [22]. Monestier et al. found 
that treatment with D-penicillamine (D-pen) or quin-
idine, two lupus-inducing drugs in humans, resulted 
in production of autoantibodies against chromatin 
antigens in genetically susceptible mice [23]. The 
authors found that the Vh chains of several D-pen or 
quinidine-induced monoclonal antibodies (mAb) are 
most similar to those of anti-nucleolar mAb obtained 
from mercury-injected mice. The authors refer to 
a study showing that cross-reactive idiotypes are 
shared by autoantibodies induced by heavy metals, 
D-pen and in graft-vs.-host reactions. 

The potential of heavy metals to induce autoanti-
bodies has been investigated in animal models. Orig-
inally described by Druet [24], it has since then been 
confi rmed by other groups. Eneström et al. showed 
that both mercury and silver induced anti-nucleo-
lar antibodies (ANoA), targeted against fi brillarin, 
in genetically susceptible mice [25, 26].While mer-
cury furthermore induced systemic immune com-
plex deposition and polyclonal activation of B- and 
T-cells, silver did not. Pollard and colleagues, who 
demonstrated the same results with regards to mer-
cury, ANoA and fi brillamin, propose that mercury 
binds to the thiols in the cysteine group of fi bril-
lamin, thereby changing its antigenicity and sub-
sequently evoking the production of autoantibodies 
[27]. In patients with systemic scleroderma, ANoA 
in about half of the patients reacted with fi brillamin. 
After exposure to mercury, certain strains of rats 
produced high levels of antibodies to laminin [21].

In a recent article [28], El-Fawal and co-workers 
studied the immune status of metal-exposed work-
ers and experimental animals. Antibodies to neuro-
nal cytoskeletal proteins, neurofi laments and myelin 
basic protein (MBP) were frequently present in the 
sera of male workers exposed to lead and mercury. 
The titers correlated with blood and urinary con-

centrations of those metals. Similar results were 
obtained in animal systems. In rats exposed to 
metals, histopathology showed central nervous 
system (CNS) and peripheral nervous system (PNS) 
changes as well as astrogliosis. The authors con-
clude that autoantibodies can be used to monitor the 
neurotoxicity of environmental chemicals and that 
immune mechanisms may be involved in the pro-
gression of neurodegeneration.

Rheumatoid Arthritis

The joint infl ammation in rheumatoid arthritis 
(RA) is characterized by invasion of T-cells in 
the synovial space and proliferation of activated 
macrophages and fi broblasts in the synovial intima. 
Further, in many cases, plasma cells producing rheu-
matoid factor can be detected. The localized CD4+ 
T-cells show strong signs of activation, and trigger 
macrophages and immunoglobulin (Ig)-producing 
cells in the joint. These macrophages produce pro-
teolytic enzymes and pro-infl ammatory cytokines 
such as IL-1 and TNF that contribute to cartilage 
and bone destruction. The T-cell activating antigen 
is presently unidentifi ed. RA is linked to HLA-DR4, 
indicating that antigens presented on this HLA type 
may be important in the pathogenesis of the disease 
[29].

 At many sites in the synovium, the histopatho-
logic fi ndings resemble those of a classic delayed-
type hypersensitivity reaction [30]. The majority of 
synovial T-cells are of the memory type and express 
activation antigens like HLA-DR and transferrin 
receptors on their surface. Large, strongly HLA-DR 
positive macrophages and dendritic cells form close 
contact with the T-cells. In comparison to normal 
synovial lining cells, rheumatoid synovial dendritic 
cells are extremely effi cient in allogenic T-cell activa-
tion [30]. Furthermore, most data on humans are 
consistent with the hypothesis that RA is not caused 
by antibodies to type 2 collagen but that the infl am-
matory response is amplifi ed by production of these 
antibodies [30].

The rheumatic joint also shows an increased 
activity of macrophages and leucocytes which are 
producing reactive forms of oxygen, so-called reac-
tive oxygen species (ROS) or free radicals [31]. Tran-
sition metals are known to catalyze free radical for-
mation (e.g. the Fenton reaction) [32]. It is shown 
that ROS degrade cartilage components and activate 
leukocyte collagenase [33]. Additionally, free radicals 
mediate lipid peroxidation and oxidize Ig, which is 
also found in the rheumatic joint [33]. 

Pedersen et al. discuss the link between the 
exposure to heavy metals in paint pigments and 

Jenny Stejskal & Vera DM Stejskal



355Neuroendocrinology Letters ISSN 0172–780X Copyright © 1999 Neuroendocrinology Letters

the development of RA [34]. The causal relation-
ship between metals and the development of RA is 
reviewed by Kusaka [35]. Notably, the treatment of 
RA includes the administration of gold salts, peni-
cillamine, antioxidants and sulfa-based drugs. The 
frequency of side-effects induced by gold and peni-
cillamine treatment is high, and the symptoms in 
the affected patients resemble those of chronic metal 
exposure.

Colloidal gold is a routine treatment of RA. The 
effects of gold drugs include inhibition of monocyte-
induced proliferation of lymphocytes [36]. Further, 
gold accumulates in lysosomes of macrophages and 
stabilizes lysosomal membranes, leading to reduced 
production of free radicals [37]. It is known that 
therapeutic gold can sometimes exacerbate the dis-
ease, and that phospholipase C (PLC) and arachi-
donic acid are increased in RA patients. Gold inter-
acts with selenium in vivo, decreasing the amount 
of this essential trace element [38, 39]. Goldberg 
et al. found that in contrast to other metals, gold 
in low concentrations stimulates leukocyte collagen 
synthesis while higher concentrations decrease col-
lagen synthesis [38]. Gold also induces the produc-
tion of metallothioneins [40].

The fact that gold allergy today is frequent [41] 
should be taken into account in the treatment of RA 
patients with gold preparations, as demonstrated by 
one study [42]. In this study, an intramuscular test 
dose of gold sodium thiomalate induced a fl are-up 
of previously positive epicutaneous and intradermal 
test sites, with a histological and immunohistochem-
ical picture compatible with an allergic contact der-
matitis. Several studies have reported debut of gold 
allergy as determined by positive patch test after col-
loidal gold treatment in RA [42–44]. Of drugs caus-
ing cutaneous reactions, gold salts used in the treat-
ment of RA are the most frequent [42].

Another drug used in the treatment of RA is 
D-penicillamine (D-pen). The total frequency of side-
effects is high [45–47] and amounts to 30-60%, of 
which acute hypersensitivity reactions constitute 
2-10%. Severe side-effects include toxicity and auto-
immune phenomena. The toxic effects include throm-
bocytopenia and leukocytopenia (5-15%), gastro-
intestinal disturbances (10-30%), changes or loss of 
taste (5-30%), loss of hair (1-2%), proteinuria (5-20%) 
[35] and skin pigmentation [48]. Autoimmune side-
effects occur in about 1% of treated patients and 
include pemphigus, SLE (systemic lupus erythema-
tosus), polymyositis [46], membranous glomerulopa-
thies and myasthenia. Since D-pen is a thiol (contain-
ing an SH-group), it has long been used as a chelat-
ing agent for various forms of metal toxicity. Metals 
are also routinely used for the detection of D-pen and 

protein thiols [49]. The mechanism of penicillamine 
action has been studied by several groups [45, 50]. 
Interestingly, in one study [47] the histological fi nd-
ings of mercury-induced glomerulonephritis are vir-
tually indistinguishable from the picture induced by 
D-pen. This implicates that the latter case is perhaps 
not caused by D-pen per se, but rather by the mobi-
lized metal. Halliwell [51] showed that the chelating 
agent Desferal prevents iron-dependent formation of 
hydroxyl radicals involved in the destruction of the 
infl amed joint. The same author discusses the role of 
free radicals in RA [51, 52]. D-pen oxidation is cata-
lyzed by transition metals, i.e. the metal is simultane-
ously reduced [53].

Swollen and aching joints, among other systemic 
symptoms, are reported by some women with sili-
cone breast implants. The alleged offending mate-
rial, silicone, is a synthetic polymer containing a sil-
icon-oxygen backbone [54]. The authors claim that 
the polymeric and hydrophobic characteristics of sili-
cone and the presence of electrostatic charges and 
organic side groups make silicone a potentially ideal 
immunogen. Since silicon (Si) is an essential constit-
uent of proteoglycans, it could cross-react with con-
nective tissues. In one study comprising 46 patients 
and 45 controls, 35% of women with health problems 
attributed to silicone breast implants had anti-colla-
gen antibodies (to collagen type I and II), while only 
8.8% of the control group did [55].

Multiple Sclerosis

In multiple sclerosis (MS), an autoimmune T-cell 
attack on the CNS myelin sheath results in demy-
elinated plaques. The periventricular white matter, 
medulla oblongata and the optic nerves are most 
commonly affected, but any part of the CNS can be 
involved. The plaques commonly surround venules. 
In active plaques, a disrupted blood-brain barrier 
and some edema can often be seen. Infl ammatory 
cells, including activated T-cells, plasma cells and 
macrophages are prominent and accumulate around 
centrally located vessels, and in the periphery where 
myelin loss occurs. Microscopical changes include 
loss of myelin; however, axons are relatively spared.

The demyelinization causes the common symp-
toms of MS, such as disturbances in vision, coor-
dination, speech, strength, sensation and bladder 
control, among others. Genetically, MS is linked to 
HLA-DR2 [2]. The relatively low concordance of 
monozygotic twins to develop the disease (25-30%) 
[56] suggests that the myelin basic protein (MBP)-
specifi c T-cell repertoire may be shaped differently 
even in monozygotic twins [57], and also that other 
factors may operate in the pathogenesis of the dis-
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ease. Robinson et al. discuss a connection between 
MS and genes encoded within or closely linked to the 
TCR (T-cell receptor) beta chain gene complex [58].

Several epidemiological studies link environmen-
tal metal exposure to the subsequent development of 
MS. Ingalls et al describe the outbreak and cluster-
ing of MS and other demyelinating diseases as well 
as myasthenia gravis following pollution of the envi-
ronment with large concentrations of heavy metal 
wastes in sewage and river water in one area [59, 
60]. Irvine et al. fi nd that areas with soils low in 
copper, iron and vanadium, but high in lead, nickel 
and zinc, and with drinking waters low in selenium 
and sulfate may predispose to MS [61]. 

Can metals cause demyelinization? Schwyzer et 
al. discuss how exposure to toxic low- molecular 
weight substances cause modifi cation of protein or 
glycoprotein in the myelin sheath [62]. This induces 
the formation of autoantibodies and phagocytosis of 
the damaged myelin will lead to the formation of 
plaques. Simultaneously, MBP-specifi c lymphocytes 
are present in the blood of MS patients [63]. In rats, 
exposure to methylmercury will generate antibod-
ies to neurotypic and gliotypic proteins such as MBP 
and GFAP (glial fi brillary acidic protein) [64]. Metals 
are used for the staining of brain and nervous tissue 
in histopathology [65]. Following a disrupted blood-
brain barrier (e.g. after injury), metals can enter the 
CNS, bind to proteolipid protein (PLP) or MBP in 
myelin and evoke an autoimmune response. The dis-
ruption of the blood-brain barrier is not the only way 
that metals can enter the CNS. Chang [66] injected 
radioactively-labeled mercury into rodents and sub-
sequently demonstrated the deposition of radioac-
tivity in the myelin sheath of the brain. Interest-
ingly, several studies show that there is no difference 
between the amount of heavy metal deposition 
in autopsies of MS subjects compared to controls 
[67–69]. Further, investigators found no difference 
between the number of amalgam fi llings between 
MS patients and controls [70, 71], nor between blood 
and urine levels of mercury and lead [71].

Siblerud et al. [72] compare laboratory measure-
ments of MS patients with dental metal fi llings with 
MS patients with metal fi llings removed. The metal-
exposed MS patients had signifi cantly lower levels 
of red blood cells, hemoglobin, hematocrit, thyrox-
ine, total T-cells and CD8+ suppressor cells than 
the unexposed MS patients. The exposed MS group 
showed signifi cantly higher blood urea nitrogen 
and hair content of mercury, than the unexposed 
group. The metal-exposed MS group also had signifi -
cantly more (33.7%) exacerbations during the past 
12 months compared to the unexposed group.

Another aspect of the role of heavy metals in the 

development of MS is the interaction between zinc 
and other divalent cations. It has been shown that 
zinc stabilizes the association of MBP with brain 
myelin membranes by promoting its (Zn) binding to 
proteolipid protein [73]. Another study confi rms this 
fi nding, and also investigates the potency of other 
divalent cations to interfere with the binding of 
zinc to MBP [74]. The ions most effective to inter-
fere with zinc binding were cadmium, mercury and 
copper. However, MBP aggregation was not inhib-
ited by copper.

Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a systemic 
motor neuron disease that affects corticospinal and 
corticobulbar tracts, ventral horn motor neurons 
and motor cranial nerve nuclei [75]. Most cases of 
ALS are sporadic with a male predominance, begin 
in midlife, and run a course of 2 to 6 years. Approxi-
mately 10% of cases are familial and these have been 
linked to a point mutation in the gene coding for 
Cu/Zn superoxide dismutase (SOD) [75]. In a recent 
review Multhaup [76] suggests that the most con-
vincing evidence so far for a link between neurolog-
ical disorders and oxygen radical formation is the 
strong association between Familial ALS (FALS) and 
mutations in the Cu/Zn superoxide dismutase gene. 
It was observed that some pedigrees of autosomal 
dominant FALS have missense point mutations in 
the gene located on chromosome 21, encoding cyto-
solic Cu/Zn superoxide dismutase 1 (SOD1). Mice 
transgenic for mutated SOD1 develop symptoms and 
pathology similar to those in human ALS [77]. This 
study indicates that mutant SOD1 toxicity is medi-
ated by damage to mitochondria in motor neurons, 
and this may trigger the functional decline of motor 
neurons and the onset of ALS in mice. In rats admin-
istration of antioxidant coenzyme Q10 increases 
brain mitochondrial concentration and exerts neu-
roprotective effects [78]. The role of free radicals 
and mitochondrial mutations in ALS pathology was 
recently reviewed by Cassarino and Bennett [79].

One feature of ALS is dysregulation of the excit-
atory amino acid glutamate (GLU) in the extracel-
lular space in CNS and in plasma [80]. Mercury has 
been shown to inhibit glutamate uptake in astro-
cytes [81]. The results of another study [82] demon-
strate that mercury binds to SH-groups in the astro-
cyte membrane and disturbs GLU transport.

Recent evidence supports the role of autoimmune 
mechanisms in the pathogenesis of ALS. One review 
fi nds that infl ammatory cell infi ltration in the CNS 
of ALS victims may be more common than previ-
ously suspected [83], especially referring to fi ndings 
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of both CD4+ and CD8+ around degenerated cor-
ticospinal tracts. In another study, Kerkhoff et al. 
found no difference between the number of T-cells 
in the peripheral nervous system (PNS) between 
patients with MND and controls [84]. However, 
increased MHC II expression on denervated 
Schwann cells and macrophages in nerves with 
axonal degeneration was found. The group also dem-
onstrated that the infl ammatory cell infi ltrate was 
not secondary to axonal degeneration. Finally, this 
review refers to studies demonstrating IgG in motor 
neurons in the spinal cord and in the motor cortex 
of ALS patients, compared to controls that did not 
show IgG presence. Activated macrophages have 
been found in the spinal cords of ALS cases [84] and 
in one study [85], 75% of ALS patients had anti-
bodies to calcium channels compared to controls. The 
antibody titers correlated with disease progression. 
In ALS, among other nervous system disorders, 
autoantibodies against neural proteins are evident 
at some stage of the disease. In one study [86], 
lead-exposed mice subsequently developed autoanti-
bodies against neural proteins, including MBP and 
GFAP. To our knowledge, there is no published study 
addressing the issue of metal hypersensitivity in 
ALS. In our laboratory, 12 out of 13 ALS patients 
tested showed positive lymphocyte responses to 
metals in vitro [87].

The observation that in two different studies of 
120 and 90 monozygous twin pairs only 2 pairs 
respectively none were concordant for ALS develop-
ment points to the role of an environmental factor in 
the pathogenesis of ALS [88]. It is well known that 
neurotoxins, including heavy metals, induce selec-
tive death of certain groups of nerve cells [89]. Heavy 
metals have been linked to the development of ALS 
through environmental [59, 90–93] and occupational 
[94–97] exposure. One case study [96] describes 
the development of a syndrome resembling ALS 
after occupational exposure to mercury. The syn-
drome resolved when the exposure was terminated. 
In another study of 77 ALS cases and 80 controls 
[91], exposure to heavy metals was connected to 
a high relative risk for the development of ALS. 
However, other studies did not show any correlation 
between occupational heavy metal exposure and the 
development of ALS [98, 99]. Schwarz et al. [100] 
describes the development of ALS in a young nurse 
accidentally exposed to mercury from a thermom-
eter plunged into the palm of her hand. Concen-
trations of mercury in blood and urine were in the 
normal range. The authors conclude that relatively 
small amounts of mercury may cause ALS without 
other signs of mercury intoxication. In one case 
study, the removal of metal fi llings led to complete 

remission of ALS [101].
Metals may enter the CNS through the circum-

ventricular organs and because of lipophilic proper-
ties cross the blood-brain barrier. A disrupted blood-
brain barrier increases this passage. Skeletal trauma 
and participation in sports are reported risk factors 
in ALS [102]. Mercury vapor is continuously released 
from amalgam fi llings and readily crosses the blood-
brain barrier. Within the brain it is oxidized to inor-
ganic forms. While the half-life of mercury vapor 
in the blood is very short, the half-life of mercury 
stored in the brain can be over 20 years. Mercury 
has been found in nerve cells in autopsy analysis 16 
years after mercury exposure [103]. 

Pamphlett and co-worker determined the fate 
of inorganic mercury injected intraperitoneally in 
mice [104]. Mice were injected with mercuric chlo-
ride (0.05-2 micrograms/g body weight) and studied 
between 5 days and 18 months after injection. Five 
days after injection mercury granules were detected 
in motor neurons of the spinal cord and brain stem. 
Mercury was still present in motor neurons 6-11 
months after injection. The authors conclude that 
since low doses of inorganic mercury are selectively 
taken up and retained by motor neurons, mercury 
is a good candidate for a cause of sporadic motor 
neuron disease. Regarding metallic mercury, as little 
as 12 hour exposure to 25 microgram mercury/m3 
resulted in deposition of mercury granules in spinal 
motor neurons where it remained for 30 weeks after 
exposure [105].

Animal studies clearly show that most divalent 
cations (such as cadmium, mercury and lead) are 
bound to proteins in plasma (e.g. albumin, transfer-
rin) [106] and taken up by non-specifi c (fl uid phase) 
endocytosis and retrogradely transported along the 
axon to the soma of the neuron [107]. The same 
author describes that metals enter through ion 
channels, for example lead through calcium chan-
nels and mercury through both sodium and calcium 
channels. In this way, certain toxins may bypass 
the blood-brain barrier and accumulate in neurons. 
After injections of iron, cadmium and mercury in the 
tongues of mice, these metals were detected in the 
hypoglossal nuclei [107]. Injections of iron and mer-
cury into the vibrissae area of mice resulted in the 
deposition of these metals in the facial nuclei. After 
application of gold particles to the nasal mucosa, 
gold was localized within the axoplasm, in the mito-
chondria of the olfactory nerve. The gold particles 
reached the olfactory bulb 30-60 minutes after inoc-
ulation. The same was shown for silver. In these 
experiments, no morphological evidence of nerve cell 
degeneration was demonstrated, nor did the animals 
show any signs of neurologic dysfunction. Olfactory 
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dysfunction is demonstrated in cadmium-exposed 
workers [107]. It remains to be seen if the genetics 
of the experimental animals or yet another factor is 
responsible for differences in the outcome.

Trace element analysis of ALS patients show vari-
able results. One study found signifi cantly higher 
levels of selenium, and signifi cantly lower levels 
of manganese in red blood cells of ALS patients, 
compared to controls and to one group consisting 
of patients with other neurological disorders [108]. 
Another study found signifi cantly lower levels of 
mercury and selenium in plasma and red blood cells, 
compared to controls [109]. A third study found 
higher levels of mercury, and lower levels of sele-
nium in the hair of ALS patients compared to con-
trols [110]. Analyses of calcifi ed substance in the 
frontal cortex of ALS cases showed signifi cantly 
higher levels of aluminum and calcium than in con-
trol subjects [111, 112]. It is known that mercury 
modifi es Ca transport [113] and metal-induced cal-
cifi cation has been demonstrated in the degenerated 
areas of CNS tissue in ALS [114]. One of the pos-
sible explanations of accumulation of trace metals 
in the brain may be defi ciency in detoxifi cation sys-
tems [115]. One of the important enzyme systems in 
this respect is sulfoxidation. Generally, patients with 
neurodegenerative diseases such as Parkinson’s dis-
ease, ALS and Alzheimer’s disease have defi cient 
sulfoxidation. The rate-limiting step is the conver-
sion of cystein to sulfate due to low activity of cyste-
ine dioxygenase. Low sulfate availability could also 
reduce an individual’s capacity to detoxify metals.

Metallothioneins are discussed in the context of 
ALS. Metallothioneins (MT) are a group of low 
molecular weight metal-binding proteins [116]. In 
the single chain polypeptide, 20 out of 61 amino acids 
are cysteines. In humans, MT exhibit a complex 
polymorphism, with at least 12 MT genes mapped on 
chromosome 12. MT have been attributed a major 
role in metal metabolism and homeostasis, includ-
ing functioning in detoxifi cation, storage of heavy 
metals, regulation of cellular copper and zinc metab-
olism, free radical scavenging, infl ammation and cell 
proliferation [116]. In vertebrates, the highest MT 
concentrations have been found in liver, kidneys, 
intestines, lung and testis [117]. In human CNS, 
immunoreactivity for MT is mainly limited to astro-
cytes. The cerebral cortex and basal ganglia stain 
more strongly for MT than other areas of the brain 
[117]. Areas of the brain containing high concentra-
tions of Zn such as the retina, pineal gland and hip-
pocampus synthesize unique isoforms of MT contin-
uously [118]. One proposed function of MT in CNS 
is to supply neurons with essential ions such as Zn 

and Cu and protect them against toxic ones. MT syn-
thesis is induced by copper, cadmium, mercury, gold 
[40], and also by glucocorticoids, interferons, IL-1, 
endotoxins, ethanol [119] and stress. Only intrace-
rebral administration of metals increases brain MT 
levels, while systemic administration does not [120, 
121]. Sanders et al. note that the relative affi nities 
of metals for MT based on in vitro studies (i.e., 
Hg2+ >Ag1+ >Cu1+ >Cd2+ >Zn2+ ) provide an indi-
rect mechanism for induction of MT via zinc dis-
placement and concomitantly allow these more toxic 
metals to be sequestered while the less toxic zinc 
is released [122]. The concentration of Zn has been 
shown to be altered in an extensive number of dis-
orders of the CNS, including alcoholism, Alzheimer-
type dementia, ALS, Down’s syndrome, epilepsy, 
Guillaine-Barre’s syndrome, hepatic encephalopa-
thy, MS, Parkinson’s disease, Pick’s disease, retini-
tis pigmentosa, retinal dystrophy, schizophrenia and 
Wernicke-Korsakoff’s syndrome. Since several of 
these disorders are associated with oxidative stress, 
and since MT is able to prevent the formation of free 
radicals, it is believed that cytokine-induced induc-
tion of MT provides a long-lasting protection to avert 
oxidative damage [118].

The choroid plexus protects the cerebrospinal 
fl uid and CNS against toxic metals. After the admin-
istration of lead, mercury and arsenic compounds, 
these metal ions accumulated in the lateral choroid 
plexus at concentrations that were 70-, 95- and 
40-fold higher than those found in the CSF [123]. 
One proposed mechanism is that the content of 
metal-binding cysteines is four-fold greater in the 
choroid plexus than in the cerebral cortex [123]. 
Methyl-mercury has been found in astrocytes [124] 
and further, heavy metals can induce CNS toxicity 
by impairing the astrocytic mitochondrial DNA 
[125]. In ALS cases, increased MT expression is 
found in spinal cord gray matter protoplasmic astro-
cytes [126, 127], and signifi cantly increased MT 
levels are found in ALS liver and kidney [126] com-
pared to controls.

Psychoneuroimmunology aspects in autoim-
mune disease

It is generally recognized that serious fatigue is 
one of the characteristics of autoimmune diseases as 
well as of allergic diseases. In addition, the other 
frequently presenting symptoms are neuropsychiat-
ric symptoms. These symptoms are also found in 
other diseases such as CFS, fi bromyalgia or MCS. 
CFS patients often have a central down-regulation 
of the hypothalamus-pituitary-adrenal (HPA) axis 
resulting in mild hypocortisolism [128]. Magnetic 

Jenny Stejskal & Vera DM Stejskal



359Neuroendocrinology Letters ISSN 0172–780X Copyright © 1999 Neuroendocrinology Letters

resonance imaging (MRI) has demonstrated areas 
of high signal in white matter more often than in 
healthy control subjects [129-131]. One hypothesis 
is that these lesions represent sites of infl ammation 
and/or demyelinization. Similar brain abnormalities 
can also be seen in single photon emission computed 
tomography (SPECT) [132, 133]. 

Many studies provide evidence of chronic immune 
activation in CFS and related diseases. The most 
prominent fi ndings are an increased number of 
CD8+ cytotoxic T-cells that show activation mark-
ers [134]. Another fi nding is a decreased function of 
natural killer (NK) cells [135–137]. One group inves-
tigated the association between affective and neuro-
endocrine abnormalities in MS patients [138] and 
found that the disorders were related to infl am-
matory activity in these patients. The possibility 
of chronic metal-induced infl ammation triggered by 
occupational and dental metal exposure was recently 
investigated by Sterzl et al. [18]. In this study, 
patients with fatigue and with or without autoim-
mune thyreoiditis exhibited signifi cantly higher in 
vitro lymphocyte responses to inorganic mercury 
and nickel as compared to healthy controls. As 
shown previously, mercury has been found in the 
thyroid gland [139]. Patients with psoriasis and 
atopic eczema improved following the reduction of 
metal exposure by diet low in metal ions or by dental 
metal replacement in metal-sensitive patients [140, 
141]. In another Japanese study [142] lymphocyte 
stimulation test is used to identify the causative 
metals. These studies confi rm the data of the Swed-
ish scientists on the benefi cial effects of removal 
of incompatible dental materials in metal-sensitive 
patients with CFS-like symptoms [19, 87]. In Swed-
ish as well as in Czech patients, concordant decrease 
of lymphocyte reactivity to dental metals was 
observed following the replacement of metallic res-
torations. 

Metals are just one of the environmental agents 
which may induce T-cell mediated delayed-type 
hypersensitivity and thus trigger the multi-symp-
toms observed in the above-mentioned disorders. 
Other low-molecular weight compounds which may 
operate similarly are pharmaceuticals or chemicals 
such as formaldehyde and isothiazolinones [143, 
144]. The effects of environmental toxins on the 
dysregulation of the HPA-axis has been studied in 
animal systems [145] and in man [146]. Metals may 
disturb the endocrine axis by binding to crucial sites 
in the HPA-axis. Signifi cant accumulation of mer-
cury in the pituitary gland is reported by Weiner et 
al. [147] and Maas et al. [148]. The accumulation of 
mercury in neurosecretory neurons in the hypothala-
mus of rodents is described by Villegas et al. [149].

Discussion

In the light of current knowledge, it seems plau-
sible that metals are directly or indirectly involved 
in the induction or promotion of autoimmunity. At 
least four different mechanisms could be involved in 
the induction or promotion of metal-induced pathol-
ogy: free radical formation, local toxic effects, calci-
fi cation and infl ammation.

Current available literature indicates a potential 
risk for the induction of autoimmunity by metals 
in man. Based on animal studies, this risk seems to 
be regulated by genetic factors, among others. For 
example, certain strains of mice develop ANA anti-
bodies to metals while others do not. In man, the 
susceptibility to the effects of xenobiotics may be 
due to the genetically determined detoxifi cation sys-
tems, including the acetylator-, sulfoxidizer-, aro-
matic hydrocarbon receptor-, P450- and MT-pheno-
types [21]. Certain MHC structures may present 
antigens to helper T-cells more effi ciently then 
others and thus facilitate the development of auto-
immunity [56]. Thus the ability to detoxify xenobiot-
ics together with the individual susceptibility to the 
metal are probably the most important factors in the 
outcome of metal exposure.

Although animal systems may be important for 
clarifi cation of several autoimmune mechanisms, 
they only partly reproduce the clinical disease in 
man. In man, both organ and systemic autoimmune 
diseases persist for years, while in experimental 
animal systems, autoimmunity is a transitional phe-
nomenon. To explain this discrepancy, the differ-
ences in biochemistry between man and experimen-
tal animals must be taken in account. Animals used 
in experimental studies produce their own vitamin 
C [6], which might neutralize the pathologic effects 
of metals. Animals produce under non-stress condi-
tion between 5-40 grams of vitamin C per day. Under 
stress, the production of vitamin C rises proportion-
ately. The lack of the critical enzyme L-gulonolac-
tone oxidase (GLO) which catalyzes the last step in 
the synthesis of L-ascorbic acid from D-glucose, pre-
vents several species, including guinea pigs, mon-
keys, apes and man, to synthesize the vitamin. This 
may be one factor which makes man more vulner-
able not only to the effects of metals, but to other 
free radical generating substances as well. Possibly, 
animals not synthesizing vitamin C and thus with 
a biochemistry more similar to man in this respect 
might be more suitable for study of autoimmunity.

In a recent study, Saxe et al. [69] measured the 
concentration of mercury in the brains of Alzheimer 
and MS patients and compared them with the data 
of  controls. The authors concluded that since there 
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was no difference in the mercury deposition in the 
brains of patients vs. controls, mercury cannot be a 
factor in the development of those diseases. Similar 
fi ndings were published by Fung et al. [67] and Clau-
sen [68]. If allergic rather than toxicologic mecha-
nisms operate in Alzheimer’s and MS disease, the 
interpretation of these studies may be questioned. 
In contrast to the toxic effects of metals, the con-
centration of the metal in a sensitized individual 
is of minor importance. Minute concentrations of 
an allergen can induce systemic reactions in sen-
sitized individuals. In such a situation, metal-
induced infl ammatory reactions in the brain or else-
where could be triggered despite low concentrations 
detected in body fl uids or locally. The role of immu-
nologically mediated infl ammation in the above-
mentioned diseases is well established. This is the 
reason why Saxe’s and Fung’s studies cannot be 
used as evidence of the absence of metal-induced 
pathology in MS and Alzheimer’s disease.

Considering the complexity of the immune system 
and its interaction with the nervous and endocrine 
systems [66], it is obvious that a combination of 
mechanisms is responsible for the induction of auto-
immunity. One of the most decisive factors seems to 
be individual sensitivity based on the genetic con-
stitution. Other factors include nutrition or may 
be psychological, such as stress. Infectious agents 
may through immunomodulation compromise the 
immune system and thus render the individual more 
sensitive to the effects of environmental agents. The 
synergistic effects of these factors may play a role in 
the precipitation of autoimmune disease. 

Conclusions

This review can be summed up in a few crucial 
points. The data indicates that metals have the 
potential to induce or promote the development 
of autoimmunity in man. Chronic metal-induced 
infl ammation may dysregulate the HPA-axis  and 
contribute to fatigue and other non-specifi c symp-
toms characterizing autoimmune diseases.

The majority of studies until now are designed 
from a toxicological approach, including epidemio-
logical studies and measurements of concentrations 
of metals in tissue and body fl uids. Although these 
studies establish exposure, they show no signifi cant 
differences in metal load between patient and con-
trol groups. The increased knowledge about indi-
vidual sensitivity based on genotype and phenotype 
variability together with the use of biomarkers for 
the diagnosis of this individual sensitivity seems to 
be the key in elucidation of the operating mecha-
nisms. In the case of metal pathology in autoimmu-

nity, future studies should be longitudinal studies 
of metal-sensitive patients rather than traditional 
case-control studies.
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